Defining the role of phosphomethylethanolamine N-methyltransferase from Caenorhabditis elegans in phosphocholine biosynthesis by biochemical and kinetic analysis.
نویسندگان
چکیده
In plants and Plasmodium falciparum, the synthesis of phosphatidylcholine requires the conversion of phosphoethanolamine to phosphocholine by phosphoethanolamine methyltransferase (PEAMT). This pathway differs from the metabolic route of phosphatidylcholine synthesis used in mammals and, on the basis of bioinformatics, was postulated to function in the nematode Caenorhabditis elegans. Here we describe the cloning and biochemical characterization of a PEAMT from C. elegans (gene, pmt-2; protein, PMT-2). Although similar in size to the PEAMT from plants, which contain two tandem methyltransferase domains, PMT-2 retains only the C-terminal methyltransferase domain. RNA-mediated interference experiments in C. elegans show that PMT-2 is essential for worm viability and that choline supplementation rescues the RNAi-generated phenotype. Unlike the plant and Plasmodium PEAMT, which catalyze all three methylations in the pathway, PMT-2 catalyzes only the last two steps in the pathway, i.e., the methylation of phosphomonomethylethanolamine (P-MME) to phosphodimethylethanolamine (P-DME) and of P-DME to phosphocholine. Analysis of initial velocity patterns suggests a random sequential kinetic mechanism for PMT-2. Product inhibition by S-adenosylhomocysteine was competitive versus S-adenosylmethionine and noncompetitive versus P-DME, consistent with formation of a dead-end complex. Inhibition by phosphocholine was competitive versus each substrate. Fluorescence titrations show that all substrates and products bind to the free enzyme. The biochemical data are consistent with a random sequential kinetic mechanism for PMT-2. This work provides a kinetic basis for additional studies on the reaction mechanism of PEAMT. Our results indicate that nematodes also use the PEAMT pathway for phosphatidylcholine biosynthesis. If the essential role of PMT-2 in C. elegans is conserved in parasitic nematodes of mammals and plants, then inhibition of the PEAMT pathway may be a viable approach for targeting these parasites with compounds of medicinal or agronomic value.
منابع مشابه
Phosphoethanolamine N-methyltransferase (PMT-1) catalyses the first reaction of a new pathway for phosphocholine biosynthesis in Caenorhabditis elegans.
The development of nematicides targeting parasitic nematodes of animals and plants requires the identification of biochemical targets not found in host organisms. Recent studies suggest that Caenorhabditis elegans synthesizes phosphocholine through the action of PEAMT (S-adenosyl-L-methionine:phosphoethanolamine N-methyltransferases) that convert phosphoethanolamine into phosphocholine. Here, w...
متن کاملTocotrienol Modulates the Expression of Proteins in Oxidative Stress-Induced Caenorhabditis Elegans
Objective: Oxidative stress that damages proteins result in aging and age related diseases. The aim of this study is to determine the effect of tocotrienol rich fraction (TRF) on the expression of proteins in oxidative stress-induced caenohabditis elegans (C.elegans) which has homologous genes to humans. Methods: The worms were treated with TRF prior to, after and continuously in separate group...
متن کاملTocotrienol Modulates the Expression of Proteins in Oxidative Stress-Induced Caenorhabditis Elegans
Objective: Oxidative stress that damages proteins result in aging and age related diseases. The aim of this study is to determine the effect of tocotrienol rich fraction (TRF) on the expression of proteins in oxidative stress-induced caenohabditis elegans (C.elegans) which has homologous genes to humans. Methods: The worms were treated with TRF prior to, after and continuously in separate group...
متن کاملElucidation of human choline kinase crystal structures in complex with the products ADP or phosphocholine.
Choline kinase, responsible for the phosphorylation of choline to phosphocholine as the first step of the CDP-choline pathway for the biosynthesis of phosphatidylcholine, has been recognized as a new target for anticancer therapy. Crystal structures of human choline kinase in its apo, ADP and phosphocholine-bound complexes, respectively, reveal the molecular details of the substrate binding sit...
متن کاملDetermination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans
Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 45 19 شماره
صفحات -
تاریخ انتشار 2006